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The stability of liquid bridges in zero gravity conditions under the influence of an a.c. 
electric field tangential to the interface is examined in this paper. For the theoretical 
study, a static analysis was carried out to find the bifurcation surfaces as a function 
of the three relevant non-dimensional parameters : A ,  the slenderness or ratio of 
height to diameter of the cylindrical bridge ; Po, the ratio of dielectric constants of the 
two fluids used and E, a non-dimensional quantity proportional to the applied 
voltage. Stable and unstable regions of A-P,,-E space were distinguished. Results 
indicate a strong stabilizing effect for higher values of Po. The experimental study, 
using silicone and ricinus oil to approximate zero gravity conditions fully confirmed 
quantitatively the theoretical results. 

1. Introduction 
There has for a long time been an interest in the behaviour of liquids under the 

influence of gravity and capillary forces, and subjected to electric fields. These 
studies were primarily motivated by numerous industrial applications, e.g. 
electrostatic paint spraying, image making, ink matrix printers, electrohydro- 
dynamic mixing, propulsion, heat transfer. A second motivation for such studies 
was the need to understand and control the location and motion of liquids, 
particularly of liquid propellants, in orbiting vehicles. The geometrical configurations 
usually considered for the liquid in such cases were flat interfaces, fluid jets or 
isolated drops. It is outside the scope of this paper to attempt to cover the extensive 
literature on these subjects, since most of the work is concerned with semi-insulating 
or conducting liquids. Our aim is to point out some of the relatively few works 
dedicated to purely dielectric liquids, a t  least as an admissible limit, subjected 
to tangential electrical fields at the interface (see Nayyar & Murty 1960; Melcher 
1963; Melcher & Hurwitz 1967; Melcher & Schwartz 1968; Rosenkilde 1969; Saville 
1970; Miksis 1981 ; Cheng & Chaddock 1984). 

Recently, there has been renewed interest in the confinement of liquids by surface 
tension, in order to examine the possibilities of avoiding contact between a liquid and 
a containing vessel for applications to material processing. For example, the floating 
zone technique (Hurle, Muller & Nitsche 1987) has been successfully applied to grow 
high-quality crystals of different electronic materials (e.g. Si, CdTe, GaSb, InP). In 
this technique a container-free floating zone is established, by melting, in the sample 
rod to be processed. From the mechanical point of view, this floating zone can be 
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modelled as a liquid bridge, i.e. a body of fluid anchored between coaxial circular 
disks. In these applications it is desirable to have a liquid bridge as large as possible 
with the liquid flow kept to a minimum. Unfortunately these liquid bridges can 
become unstable owing to the effects of surface tension (Martinez, Haynes & 
Langbein 1987) in the same way as liquid jets. Moreover, previous theoretical and 
experimental results have shown that these liquid bridges are subjected to 
instabilities due to variations in surface tension induced by thermal gradients, 
residual gravity, rotations, axial accelerations, value of the contact angle, etc. (see 
Hurle et al. 1987 and references therein). The real situation is extremely complex and, 
therefore, to understand the underlying physics it is necessary to consider more 
simple specific phenomena, both theoretically and experimentally. 

Here we study the effect of an a.c. electric field upon the stability of a liquid 
cylindrical bridge in the absence of gravity and thermal gradients. The motivation 
to consider electric fields stems from the well-known fact that for an insulating liquid 
jet both the critical wavenumber at which instability sets in and the initial growth 
rate of the most unstable disturbance decrease as the electric field strength increases. 
To minimize the gravity effects, theoretically as well as experimentally, we surround 
the liquid bridge with another liquid of the same density, in the so-called Plateau 
tank. 

The paper is organized as follows. In the first part we formulate the problem and 
perform the stability analysis. In  the second part we describe the experimental set- 
up and compare the experimental results to the theoretical ones. 

2. Formulation of the problem 
Consider the physical situation shown schematically in figure 1 .  The inner (i) and 

outer (0) liquids are assumed to be immiscible and of the same density. If liquid i is 
anchored between two bounding plates of equal radius, then for an appropriate value 
of its volume, this liquid will form a perfectly cylindrical column, i.e. a cylindrical 
liquid bridge, under the sole action of the surface tension forces a t  the interface of the 
two liquids. When an a x .  or d.c. potential difference is applied to the bounding plates 
(electrodes) new forces will act upon the liquids. For highly insulating liquids, where 
the electrical currents are very small, magnetic effects are negligible, and any such 
forces can be disregarded. We are then left with forces of electrical origin only given 
by (see Landau & Lifshitz 1971): 

where pe is the free charge density; E the electric field; e the electrical permittivity 
and p the mass density. Let us examine closely the three terms on the right-hand side 
of (1).  The first term, peE,  is a Coulombian-type force. In  general, the free charge 
density pe will always be present even for highly insulating liquids, owing to 
dissociation of impurities or of the liquid itself, and the inevitable electrochemical 
reactions at  the metal-electrode/liquid interface. These last are of paramount 
importance for electric field values of over a few kilovolts per centimetre (Denat, 
Gosse & Gosse 1979). The dynamics of the liquid will be strongly affected by this 
Coulomb-type force unless the charge carriers do not displace significantly. This will 
be the case if we apply an a.c. electric field with a period much shorter than the 
typical relaxation time of any of the liquids involved in the experiments. Fortunately, 
industrial frequency (50 Hz) is high enough that we may disregard this term for the 
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FIGURE 1. Schematic of bridge, indicating some relevant parameters. 
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vast majority of insulating liquids compared with the next term in (1). However, the 
melts of practical interest are typically good enough ionic conductors, owing to their 
relatively high temperature, and the frequency required must be high enough to 
satisfy the above condition. The second term, called the dielectrophoretic force, will 
be important whenever an inhomogeneous dielectric liquid is subject to an electrical 
stress. Here, it acts a t  the interface and normally to it. Therefore, this allows us to 
maintain the cylindrical shape as an equilibrium configuration in the presence of the 
imposed 1.111.5. electric potential difference U .  As this is not a volume force we need 
not retain this term in (1). 

The third term, called electrostriction, acts both on the liquid bulk and at  the 
interface. This electrostrictive force, being a pure gradient in the liquid bulk, is 
irrelevant to the dynamics of the liquids, since they are both assumed from the outset 
to be incompressible. Contrary to the usual convention of neglecting its contribution 
it may be convenient to see how it is cancelled through the corresponding term at the 
interface. Consequently, the Navier-Stokes equation which governs the liquid 
motion is av 

at 
p-+pv*  V V  = - V p  +pV2U+pg++bV(E2),  

where v is the velocity; p the pressure; g is the gravitational acceleration; p the 
viscosity; b,  defined as p(da/dp)T/e, is the electrostriction parameter, and E the 
modulus of the r.m.s. electric field. 

The NavierStokes equation under hydrostatic conditions becomes a balance 
between volume and pressure forces : 

pg + $ebV(E2) - V p  = 0. (2) 

p-pgz-$bE2 = n ~ c o n s t a n t .  (3) 

This equation may be integrated and written as 

The effective pressure ll is different for each liquid, whereas the gravity term is the 
same for both since the densities are equal. 

To the mechanical equations we must add the Maxwell equations which, for 
perfect dielectric liquids with zero conductivity and zero free charge density 
( p ,  = 0 ) ,  reduce to the divergence and curl of the electric field, being both zero. 
Introducing in the usual way the electrical potential, this will have to satisfy the 
Laplace equation in each of the regions occupied by the liquids: 

V W  = 0. (4) 
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To complete the formulation of the problem, we must define the surface geometry 
and supplement the electromechanical equations with the corresponding boundary 
conditions. The interface is represented by the expression 

F(r ,  8,  z )  = r -  f (8,  z )  = 0, 

for which the outward normal vector is written 

where 

The relevant boundary conditions for our configuration are 
(i) At the electrodes : 

the voltage is fixed and the bridge is anchored: 

@ ( r ,  6, $5) = U ,  @ ( r ,  8, -$) = 0, 

f (0 ,  +$5) = R. 
(ii) On the interface: 

(a )  the tangential components of the electric field are equal a t  the interface or, 
equivalently, the electrical potential is continuous across it : 

[A@],=f = 0. (7) 

The A notation represents the difference in a quantity as we cross the interface, 
AX = X,-Xi, where subscripts refer to outer and inner liquids respectively. 

(b)  the normal components of the electrical displacement vector CE are equal since 
we assume that there is no superficial charge on the interface: 

n . [ A ( d ? ) ] , = f  = 0. (8) 

(c) the forces are in equilibrium a t  the interface: 

n[Ap/ -AT] , , f  = 0. (9) 

Here I is the unit tensor and AT is the stress tensor jump across the interface, defined 
as 

AT = A [ c E E - ~ s ( l - b ) E 2 / ] - d 7 - n / ,  

where EE is the diadic product of the electric field with itself, and IT is the superficial 
tension. The divergence of the normal vector to the interface has the form (see for 
example Struik 1957) 

We remark that the stress tensor jump comprises an electrical component (the 
Maxwell stress tensor) and a superficial tension one. Gravity does not appear 
obviously because it is a volume force. If we substitute p ,  given by (3),  into (Y) ,  its 
radial component is now written : 
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It may be shown that the azimuthal and axial components of (9) are not independent 
of the radial component and the electrical conditions. They thus give no new 
information. 

(iii) The electric field is finite on the axis r = 0, and uniform a t  large distances from 
the bridge. The potential therefore has the form 

U 
@(O,O,z) =finite, Q , ( O O , ~ , X )  =-(z+iL). L (11) 

(iv) Finally we include a condition of constant volume for the bridge: 

It is trivial to verify that the cylinder, of volume V = xR2L, is a solution of the 
equations listed above and complies with all boundary conditions. This solution is 
given by f o  = R, 

U 
@O = y(z++L),  

u 

A~’++gh[~( i -b ) ]  

The set of equations is non-dimensionalized as follows : r = r‘R, p = p‘u/R, @ = @’U 
and leads to an equivalent set for the primed quantities wherein three non- 
dimensional numbers appear. These numbers are A = L/2R, which represents the 
‘slenderness’ of the bridge; Po = Colei, i.e. the relative permittivity of the outer liquid 
with respect to the inner one (we also define pi = ei/ei = l), and .T2 = q U2/uR,  
defined as the ‘ bifurcation parameter ’, which represents the ratio of electrical to 
superficial tension forces. 

From here on we shall, for convenience, drop all primes. 

3. Shape bifurcation and stability 
The perfectly cylindrical liquid bridge is an equilibrium configuration for any 

value of the imposed external parameters (A,Po, .T) .  Nevertheless, as we move 
through a critical two-dimensional surface in this three-dimensional parameter 
space, it happens that the cylinder loses its stability and another family branches off. 
Our immediate aim in this section is to determine this surface and thus delineate the 
instability region for the cylindrical solution. We deform the system about the 
equilibrium solution and now examine its behaviour as a function of the relevant 
parameters. The bifurcation surface comes from the condition that some other 
solution exists near the equilibrium : 

f = f O + + f l  
Q, = @ O + &  

l7, = n:+ii, (a  = o,i) ,  
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where the non-dimensionalized equilibrium solution is 
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77-2 
Y 7 2  Y 

8A Pi( 1 - bi) ~ 

= - p o ( l - b o ) ~ ,  np = 1- 
8A2 

Assuming that the perturbations are small, linearization of (4) and conditions (5)-(  8),  
and (IO)-(IZ), gives, t o  first order v$ = 0, (13) 

along with 

In order to solve Laplace’s equation in both zones independently we use the 
classical separation of variables technique with conditions (16)-( 19), giving the 
following sets of independent modes : 

Here I ,  and K ,  are the modified Bessel functions of first and second kind; x, is 
defined as nn /2A ,  and A,, are constants to be found from the remaining conditions. 

The general solution is then of the form 

oc1 

&r, B, z )  = c J,(r, z )  eim8 (23) 

for the potential, and AS, 2) = c fm(z)eime (24) 

m=-cc 

tu 

m=--m 

for the interface, where we always consider the real part of the expressions only. The 
non-dependence of these modes comes from the linearity of the equations and 
boundary conditions. 

From (14), (23) and (24), we have for each mode f m  : 
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where S,, is the Kronecker delta (1 for m = 0 and 0 otherwise). For distinct values 
of m (0,l and m arbitrary and greater than 1) we have the following solutions (here 
we assume that the right-hand side of (25)  can be written in the form of a series of 
cosine terms) : 

(26) 
m 

f;, = C, sin z + Do cos z + C a,, cos [x,(z + A ) ]  +A+,  
n=l  

00 

f m  = C, sinh [(mz- l ) : ~ ]  + D ,  cosh [(m2- l ) iz]+ C anm cos [ x , ( z + A ) ] ,  (28) 

the last for Iml > 1. C,, D, and a,, are arbitrary constants to be fixed from 
boundary conditions. 

We may derive expressions for an, (for all n and m) as functions of A, ,  by 
substituting (22) and (26)-(28) into ( 2 5 ) ,  from which we deduce 

n-1 

P A P  Xn 
A n m -  an, = - 

2A 1-m2-xE 

Analysis of the m = 0 mode 

We shall study the particular case of axisymmetric perturbations, i.e. m = 0. First 
since we may write (26) as a function of the constants A,, rather than a,, we must 
evaluate those coefficients. To do this we split (15) into m-modes, giving a 
corresponding set of m equations which must be verified independently, and for that 
of m = 0 we substitute (22) and (26), where we have to  expand sinz and cos z in 
Fourier series of the argument x,(z + A ) ,  i.e. 

2 cos A cos [x,(z + A ) ]  
sinz = ~ c 

A 1 -xE 
, 

n odd 

00 cos [x,(z+ A ) ]  
cosz = - sin A { 1 + 2  c 

A n-2 1-x; 
n even 

This gives 
2cosA C, 

2 sin A Do 

(n odd) 

(n  even) 

-___- 
A 1-xi 

(30) 

A 1-xi 

where thc function H,(x, y) is defined as 

The prime indicates derivation with respect to the argument. 
Relation (30) determines the A,, coefficients as functions of the integration 

constants of the homogeneous equation (associated to ( 2 5 ) )  for &, C, and Do. By 
substituting the A,, into the expressions for a,, and the result into (26) we get the 
form off;, in terms of these integration constants and A+. Thus we have three 
unknown constants and three conditions not yet used, i.e. (20) and (21). Note that 
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(20) can be written for each mode, and that integration over 6' in (21) gives a 
condition for only : 

&dx = 0. I: 
Eventually, we arrive at the linear homogeneous system 

m 

CosinA+DocosA+ (-1)"an0+A7? = 0 ,  
n=l 

a, 

-CG,sinA+D,cosA+ C. a,,+Aii = 0, 
n=l 

Do sin A + AAii = 0. 

After some manipulation we obtain the following conditions : 

which relate in an implicit form the parameters E, Po and A .  For the case of zero 
applied voltage we are left with only the first terms in the two previous equations. 
This leads to the well-known solution given by Sanz (1985) : (32) gives A = x,2x, ... 
while (33) gives A = 4.49, 10.90, . . ., etc. It is well known that at the first bifurcation 
point, i.e. A = n, for no applied voltage, the cylindrical solution for the bridge is 
unstable. Once we apply a field the point A = K expands to  a surface in 3-P0-A space. 
This is also true for each corresponding value of A in the two infinite series given 
above. Thus we end up with a discrete family of nested surfaces which do not 
intersect. An inviscid dynamical analysis shows that this first bifurcation surface 
(corresponding to A = n) is also where instability sets in (Gonzalez et al. 1988). To plot 
this surface, shown on figure 2, we solved the equations using a Newton-Raphson 
type numerical method after accounting for the asymptotic behaviour of the series. 
The unstable region in E-po-A space is that  below the surface where all the other 
nested surfaces lie. Therefore the stability curve is given by (32). The conclusion to 
be drawn from this is that the bridge will always break asymmetrically about the 
central plane (parallel to the plates) since this equation is representative of odd 
modes of deformation. This agrees with experimental observation. The effect of 
varying Po is quite evident from this perspective graph. Clearly, when Po = 1, i.e. no 
difference in the permittivity of each non-conducting liquid, the applied voltage has 
no influence on stability and all bridges of slenderness A > x are unstable. On the 
other hand, the larger the difference in permittivities of the two liquids (high or low 
values of Po), the lower the field necessary to hold a given bridge is. For moderate 
values of Po (approaching 1) the field increases quite substantially. 

I t  is worth noting that it is of little consequence which of the two liquids forms the 
bridge (that with higher or lower permittivity) since inverting the liquids (i.e. the 
relevant parameters in (32)) will give similar values for the stability parameter E. 
Effectively, interchanging the liquids is equivalent mathematically to making the 
following change of variables: Po+ l/po and +FOE. Putting these into the 3 
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180 } 

10 
FIGURE 2. Perspective graph of the bifurcation surface in /3,-A-Z space corresponding to the first 
solution to (32). Above the surface is the stable zone. All other bifurcation surfaces (corresponding 
to the remaining solutions of (32) and all solutions of (33)) lie below this one. Note that the @,-axis 
is of logarithmic scale. 

A 

FIGURE 3. Graph in Z-A space of the stability curves for a set of different 8, values: 
solid lines, @, > 1 ; broken lines, Po < 1. 

governing equations and boundary conditions, the only modification is that H,(z ,  y) 
is replaced by H z ( s ,  y) given by 

This function takes values close to those of H,(z, y). 
From the definition of the electrical stability parameter 5 we can see the influence 

of the interfacial tension. With E2 proportional to the inverse of u, it is obvious that 
as u increases, the stabilizing field also increases. This is in contrast to the zero 
applied field case where interfacial tension does not intervene in the stability 
criterion. 

To illustrate further the nature of the bifurcation and to present a more 
quantitative aspect, we show a series of stability curves in &A space for a number 
of different values of p,, (figure 3). Thus for any two given fluids, corresponding to one 
value of Po and thus one curve on the graph, the curve can be used to estimate with 
some precision the value of the applied field necessary to hold stable a bridge of any 
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To voltage 
/ source Insulating 

FIGURE 4. (a )  Representation of the experimental cell. ( b )  Schematic of electrical circuit : 
(1) autotransformer (0-245 V);  (2) transformer (22(r20000 V);  (3) experimental cell. 

given length. In  our case we verified this via comparison of experimental results to 
the theoretical curve with /lo = 0.55 (see $4). 

Finally, there is no static solution for the non-axisymmetric modes, m > 0 (see the 
Appendix). Non-axisymmetric dynamical modes were shown to be stable via a 
similar analysis to the axisymmetric case following a study of the resulting stability 
equations (Gonziilez et al. 1988). This is not surprising in view of the general 
stabilizing effect of tangential electric fields. 

4. Experimental results and discussion 
The experimental cell is schematized in figure 4 ( a ) .  The Plateau tank is made of 

Plexiglas (10 x 10 x 10 em3) and the two electrodes of copper (electrode diameter : 
8 cm). These last are 5 mm thick with rounded edges in order to decrease field 
distortion effects. Small copper or nylon guard (or containing) rings, 5 m m  in 
diameter, were glued to the centre of each electrode. These were used to anchor the 
bridge a t  well-defined boundaries. With such large parallel flat electrodes we could 
be reasonably sure of having a parallel field tangential to  the liquid bridge and in the 
axial direction. The upper electrode was vertically mobile and the maximum 
electrode gap was 5 cm. 
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Density Electrical Tnterfacial 
Dielectric at 25 "C conductivity tension 
constant (kg/m3) (S/m) (mN/m) 

8.4 1 Silicone oil 2.6 957 10-13 

Ricinus oil 4.76 957 2.5 x 10-lo 

TABLE 1 .  Physical properties of the liquids: silicone oil, outer; ricinus oil, inner 

20 - 

10 - .+ ++ f 
+ *-+/ 

2 2.5 3 3.5 4 4.5 5 5.5 
A 

FIGURE 5. Comparison between experimental points and the theoretical curve corresponding to 
Po = 0.55. The magnitudes of the error bars are discussed in t&e text. 

The lower electrode was fixed and had a small hole in its centre through which 
liquid injection or extraction could be carried out. We used an insulin syringe 
attached to a thin transparent nylon tube in order to measure the volume of liquid 
injected into the bridge. Thus, knowing the height, diameter and the rate of opening 
of the electrode gap, we could ensure that the liquid bridge volume corresponded to  
that of a cylinder of equal dimensions. 

The upper electrode was driven by a 15 V d.c. linear motor attached to a set of 
insulating cog wheels. The vertical velocity of the electrode had a maximum of 
2 mm/min. The metal supporting shaft was encased in a nylon cylinder to ensure 
adequate electrical insulation. The two leads from the a.c. voltage source were 
connected to the supporting shafts of each electrode. 

The liquids used were silicone oil (Rhodorsil 47V50) and ricinus oil. Some of the 
relevant physical properties of these liquids are given on table 1. The ricinus oil was 
injected to form the bridge with the silicone as the surrounding liquid. This 
configuration was chosen since the latter had a lower conductivity and is completely 
transparent, facilitating visualization. 

The electrical circuit is schematized in figure 4(b). An auto-transformer (output: 
0-245 V, 160 VA.) fed an a.c. transformer (220-20000 V), the outputs of which went 
to each electrode. The circuit operated a t  industrial frequency (50 Hz). 

The operating method was to first form a small bridge and then apply the electric 
field. Thus stabilized, the electrode gap was slowly opened and enough liquid injected 
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FIGURE 6. (a )  Bridge of slenderness A = 4; applied voltage V = 16500 V ;  (6) A = 5, 
v = 21 000 v. 

to keep the 'cylindrical volume '. Then, for a given height, we gradually decreased the 
electrical field until the bridge broke. This was verified by numerous repetitions of 
the experiment. The ambient temperature was always close to  25.5 "C. 

In order to compare the experimental curve with the theoretical (figure 5) ones, we 
had to experimentally evaluate the surface tension between the ricinus and silicone 
oils, a proper evaluation of which is not, to our knowledge, available in the literature. 
We evaluated i t  as being equal to 8.4 mN/m (to within an error of about 10% in our 
experimental conditions), using the method given by Sanz (1985). 
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FIGURE 7. Bridge in process of breaking ( A  = 4, V = 0).  

Further sources of possible experimental error include the exact values of the 
applied voltage (input voltage and multiplication factor), the radius of the bridge, its 
height and liquid volume and the value of the dielectric constant of the inner fluid. 
First, concerning the slenderness, we estimate the relative error to be 2.4 %, taking 
into account possible maximum errors in the diameter of the bridge, its volume and 
its height. For the parameter 8, we estimated in the usual way the errors in 
interfacial tension, bridge radius and voltage from the autotransformer. Regarding 
the conversion factor of the transformer and the permittivities of the liquids we took 
the imprecision in the values supplied by the manufacturers to be 1%. Thus we 
calculated a total relative error of some 9 %. The major source of imprecision is due 
to the interfacial tension evaluation (responsible for more than half). Note that all 
error bars are taken for the most unfavourable conditions. 

On figure 5 are given the experimental values and the theoretical curve of 8 as a 
function of A for the corresponding value of Po. Agreement between them is quite 
satisfactory. The significant difference for values close to A = 2.8 should be expected 
since the effect of gravity, due to the small differences in liquid density, becomes 
important for small values of the applied electric field. As was suggested by one of 
the referees, an 'effective' value of the slenderness equal to 2.8 instead of n: is 
obtained if one assumes a difference in liquid densities of2 Kg/m3 (Rivas & Meseguer 
1984). The results of this series of experiments serve to verify the theoretical analysis 
both qualitatively and quantitatively. 

From the photographs we see stable bridges of different slenderness greater than 
IT. The bridges shown in figures 6 (a )  and 6 ( b )  are of slendernesses 4 and 5 respectively. 
Both of these are stable in time. The applied voltage for the first is 16500 V, well 
above the critical voltage for this bridge, and hence it is almost symmetrical through 
the central plane. For the second, we see that the bridge has a more pronounced 
amphoric shape, since the voltage is quite close to the critical one (V = 21 kV > 
V, = 10.4 kV). The bridge will not be cylindrical since the Bond number (ApgR2/a) 
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FIGURE 8. The bridge broken asymmetrically into two drops and a central satellite. 

is not exactly zero. In figure 7, a bridge of slenderness 4 is shown as the field is cut 
of€. We can clearly see the non-symmetric way in which this happens both here and 
in figure 8 where the volume of one drop is evidently larger than the other. 

5.  Conclusion 
The effect of an applied a.c. electric field on a liquid bridge (of non-conducting 

liquids) is to stabilize it if there is a difference in dielectric constant values between 
the two fluids involved. It does not appear to matter which liquid of the two forms 
the bridge, that of higher or lower permittivity. As the difference in dielectric 
constant between the liquids increases, the electric field necessary to hold a given 
bridge decreases. Increasing the interfacial tension has a similar effect. 

The above points where possible were verified experimentally with good agreement 
found between theory and experiment. 

As a final remark, we consider that the stabilizing influence of the electric field 
could be useful in the processing of non-conducting materials. Nevertheless, further 
research is necessary in order to characterize the interplay between these electrical 
effects and thermal gradients along the liquid bridge. 
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partial fulfilment of the requirements for the doctoral degree of one of the authors 
(H. G.) One of the authors (F, M. J. McC.) benefited from a CAICYT postdoctoral 
fellowship. We also wish to acknowledge fruitful discussions with Professor M. G. 
Velarde of the UNED (Madrid). 
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Appendix. Demonstration of stability of non-axisymmetric modes 
Mode Iml = 1 

For Iml = 1 we must make use of ( 2 7 ) ,  where the a,, are given by (29)’ with the 
appropriate value of m. The function z in (27) is written as a Fourier (cosine) series : 

2 cos[xn(z+A)] z = - -  r, 
A n-1 

n odd 

and the resulting expression forf; is substituted, as in the text, into (15)’ for m = 1. 
We then obtain the following expression for a,, as a function of C,, using ( 2 9 ) :  

( n  even). 

Of the three conditions that we have forJ(z) (the anchor conditions and that of 
constant volume), we retain the first two: 

f;( f A )  = 0. 

From these we obtain that C, = 0 and the condition 

n odd 

Since H,(Po ,  xn) is always negative, the expression in parentheses is always positive 
and we deduce that C, = 0. Clearly, f;(z) = 0 also. That is to say that the only 
solution is the trivial one and that this mode is stable for all values of A ,  Po and E. 

Modes Iml > 1 
Here we use conditions (32 )  and (33), with the expressions in series: 

2(m2-  l))cosh[(m2-l)iA] O3 cos[x , ( z+A)]  ’ A n-l x2,+m2-1 ’ sinh[(m2-l)ix] = - 

n odd 

(m2-l)isinh[(m2-l)iA] 
A 

cosh [(m2- l ) i z ]  = 

n even 

Proceeding in an analogous manner to the cases for m = 0 and Iml = 1, we obtain 
the following conditions for the coefficients C,  and D,: 

C, Q&, A ,  P, E 2 )  = 0, D ,  Qd(m, A ,  P, E 2 )  = 0, 
where 

Q,(m,A ,p ,E2)  = Atanh[(m2-1):A] 

n odd 
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Qd(m,A, /3 ,E2)  = Acoth[(m2-1)iA] 
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4n2Hm(/30,xn) (x;+m2-1) 
E2(A/3)2 x, 

n even 

and H , ( P ,  x,) is defined in (31). 
To demonstrate that  C, = D, = 0, we need to prove that for any finite values of 

the parameters the expressions in curly brackets are non-zero. Thus the only solution 
is the trivial one and the modes (ml > 1 are stable. Let us therefore analyse the terms 
of the summation. Note that the expression 

" I '  4~2H,(/30,x,) (x2,+m2- 
- E2(A/3)2 x, 

is a bounded quantity within the interval [0,1], for all positive values of the 
parameters, since H,(/30,xn) is always negative and x;+m2-i is positive for 
(m( > 1. Thus, the summation has a value bounded between zero and 

30 

(x;+m2-l)-l for Q, 
n-1 
n odd 

00 

and zero and 2 (x; +m2 - 1)-l for Qd. 

Thus m 

n=2 
la even 

Qc(m,A,P ,E2)  > Atanh[(m2-l) iA]-2(m2-l)~ 2 (x2,+m2-l)-l = 0 
n=l  
n odd 

and 
00 

Qd(m,A,P,  E 2 )  > A coth [ (m2- l)iA]-2(m2- l)i C (x i+m2-  l)-' 
n=2 

n even 

1 
1 > 0. - - 

A(m2- l ) E  

The inequality is clear once the functions tanh x and coth x are developed in series of 
simple fractions (see for example Gradshteyn & Ryzhik 1980). 
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